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SUMMARY

21255

' A numerical analysis of the effect of a circular fillet on the thermal
radiation exchange between planar surfaces of zero conductivity intersecting at a
sharp angle is presented. Temperature variation along the surface for a constant
heat transfer and local heat-transfer variation for a constant wall temperature
is obtained. Surface emissivity, which is assumed to be independent of wavelength
and temperature, and fillet size are varied in the analysis. The "hot spot" for
the unfilleted structure is found at the intersection of the planar surfaces but
is moved to the point of Jjuncture in the case of a filleted structure and is
reduced in value. TFor planar surfaces that intersect at a right angle, the temper-
ature and local heat-transfer distributions for various fillet sizes are compared
with the corresponding distributions of the unfilleted surface. Exact results are
compared also with the temperature and heat-transfer distributions obtained from
an approximetion to the radiation flux function which is based on the use of a
shape factor. TFor a wide range of values for the emissivity and fillet size, the
agreement between approximate and exact results is within 5 percent. 7
Aottorn

INTRODUCTION

Interest in radiative cooling of space vehicles, solar energy collectors,
and thermal radiation shields has brought about a need to increase the fund of
engineering knowledge through predictions of the characteristics of basic geometric
configurations and through application of available mathematical techniques to the
analysis of the fundamental equations. Heaslet and Lomex contributed to that fund
by examining the radiative heat transfer between conducting planar surfaces that
intersect at a sharp angle (ref. 1). These same authors also studied the radia-
tive heat transfer for infinite, nonconducting shells with circular-arc sections
(ref. 2). The purpose of this paper is to extend the results of these two recently
published analyses by wedding the two configurations employed in their work. Thus,
planar surfaces are joined by a concave surface of arbitrary radius, that is,
joined by a fillet. The presence of the fillet at the juncture of the planar sur-
faces affects the megnitude and distribution of radiation flux, .exact solutions
for which are obtained from a machine code that incorporates the ILiouville-Neumann



method of solving a Fredholm integral equation of the second kind. Simple, closed-
form solutions for certain limiting conditions provide a partial check on numerical
results.

The emphasis in this analysis will be placed on, first, the influence of the
fillet on the radiative flux distribution corresponding to the unfilleted structure
and, second, the importance of surface emissivity. Effects of thermal conduction
will not be treated here, thus eliminating nonlinear terms in the governing inte-
gral equation. The configuration, two-dimensional surfaces intersecting at right
angles, suffices to illustrate the alteration of the flux distribution due to
changes in the primary parameter, fillet size. As in references 1 and 2, the sur-
face properties of absorptivity and reflectivity are assumed to be independent of
surface temperature, and wavelength of radiation. The emissivity of the surface
is assumed equal to the absorptivity, less than unity and constant at all temper-
atures and at all wavelengths. By definition, then, the surface is gray. In
addition, it is assumed that emission and reflection are diffuse and only the
concave gide of the configuration radiates.

Two physical problems are formulated and solved for a filleted structure.
In the first example the surface is hcld at 2 constant temperature and the varia-
tion in local heat transfer along the surface 1s found. In the second example a
constant heat transfer is provided and the variation in temperature along the sur-
face is found. The solutions to these problems are compared with corresponding
colutions for an unfilleted structure (some of which do not appear in ref. 1) to
demonstrate the influence of the fillet.

To compare solutions corresponding to different fillet sizes, the total
length of the combined surfaces is held constant. Fillet size, therefore, can be
given simply as the ratio of fillet length to total length. When this ratio 1is
1, the present results for local heat transfer and temperature variation are
identical with results published in reference 2, which treats radiative transfer
for infinite shells with circular-arc sections. IFor a length ratio of O the local
heat-transfer golution without conduction is the same as that given in reference 1,
but the second example, temperature variation with constant heat transfer for
adjcining plates, 1s given here.

NOTATION

a see figure 1

B(s) total radiation flux function (energy per unit area, time)
c distance between field and source points

f(s) shepe factor defined in egquation (31)

G(s)  unknown function in eguation (12)

H(s) flux of incident radiation defined in equation (3)




kernel function defined in equation (1)

dimensionless length of straight-line segment on surface
length of straight-line segment on surface cross section
total length of surface cross section, 25 + 2L

local heat-transfer function defined in equation (7)
dimensionless radius of fillet, B

S+ L
ratio of total fillet arc length to total surface length,

S+ L
radius of circular arc
surface coordinate of point divided by S + L
half-length of circular-arc segment on surface cross section, %?

temperature function

Cartesian coordinate divided by S + L

Cartesian coordinate divided by S5 + L
absorptivity of gray surface

slope angle of surface at field point, arc tan %i
difference in left and right value of derivative of a function
emissivity of gray surface

angular coordinate of point on surface

scale constant determined by eguation (18) when evaluated at s = O
parameter defined by equation (13) or (1)

reflectivity of gray surface

angle measured from normal to surface at field point to line joining

. . . a . .
field and source points, arc sin 2 (counterclockwise, +;
clockwise, -)




Subscripts

o constant value of function
R maximum value of function used as reference value
1 approximate value of a function

Superscripts

source of radiation; unprimed coordinate refers to location of field point,
that 1s, coordinate of receiver

FORMULATION OF PROBLEM

Consider a concave cylindrical surface of infinite width, a cross section of
which 1s shown in figure 1, that 1s symmetric about a generatrix of the surface
midway between the ends. Iength along a cross section of the surface is measured
from the midline and in a direction perpendicular to the generators of the surface.
The characteristic dimension for this problem is the half-length, L /2, of the
surface cross section and it is used to meke all gquantities involving length
dimensionless. Since the surface is two-dimensional, an infinitesimal element of
area of unit width 1s represented by ds or ds' where s' is the dimensionless
surface coordinate that locates the source line element and s locates the field
line element at which radiation is incident.

The thermal radiation field (energy/unit time) incident at a field point, s,
lying on the concave side of the surface is calculated by summing the total radia-
tion emitted at all source points, s', also lying on the concave side of the sur-
face. Diffusely radiating elements are assumed to satisfy Lambert's cosine law.
This means that when the normals to the elements, ds and ds', at the field point
and source point, respectively, are projected onto the line joining the points,
the flux received by each element is directly proportional to the area of the
projected elements. In the idealized problem to be treated here, the normals,

N and ?', are coplanar, affording a simple expression for the angle factor (see
ref. 3).

L] sin (s, &)
2

The incremental angle factor, or kernel function times the source element, ds',
determines the fraction of energy emitted and reflected at ds' that falls
directly on ds and is given as

% ld(sin @)I = K(s, s')ds' (1)




where ©® 1s the angle measured (copnterclockwise, +: clockwise, -) from the
normal to the surface at the field point to the line joining the source and field
points. Equation (1) defines the kernel function, K(s, s'). The mathematical
form and properties of the kernel that are pertinent to the present problem, apart
from the matter of machine coding, will be set forth in the next section.

Each element of the surface emits radiation according to the Stefan-Boltzmann
law adjusted by a factor, €, the emissivity of the surface. An energy-flux balance
for an element ds' on the concave side of the surface is written as a sum of two
terms: the emitted radiation, €oT*(s'), and the reflected radiation, pH(s'), where
H(s') is the energy-flux incident at s' and p 1is the reflectivity of the
surface. The total flux, B(s'), ensuing from the source point is

fl

B(s') = eoT*s') + pH(s") (2)

where the function H(s') is

H(s?")

Il

JF B(s)K(s, s')ds (3)

L

an integral of the total flux arriving at s' summed over the entire length of
the surface. The source and field points are interchangeable, so that the integral
equation for the total flux leaving ds 1s

B(s) = ecT(s) + p‘/h B(s')K(s, s')ds’ (4)
g

For the gray surface considered here the coefficients of reflectivity, o,
absorptivity, «, and emissivity, €, satisfy the relations

1=p+a (5)
€ = a (6)

The latter equation is Kirchhoff's law under the condition of temperature
equilibrium. The heat-transfer function is defined as

Q(s) = B(s) - H(s) (7)

which, combined with equations (2), (5), and (6), gives

1 - €
€

B(s) = oT%(s) - als) (8)




Inserting equation (8) into (4) casts the inhomogeneous integral equation (k)
into a form convenient to formulate the two problems mentioned earlier. The basic
equation which serves as a starting point for the numerical work is

comi(s) - o(e) = [ [eomder) - pats )| (s, odas (5)
I

and the two problems are stated next in dimensionless form.

If a constant temperature, Ty, is maintained everywhere on the surface, then
equation (9) becomes

as) .. (a - e>fLT[Q<S'i - ] K(e, s)as’ (10)

0Ty* o To 1- ¢

If, instead, a constant heat transfer, 4y, is provided everywhere, then equation
(9) takes the form

4S 1 ST 1 - 1 t
B P P

In the formal mathematical solution of equation (10) or (ll) or both, one
considers the Fredholm integral equation

G(s) =1 + A \/; G(s")K(s, s')as’ (12)
T

where, for the constant temperature case,

a(s) = = - =255
€ €2 O'To4
(13)
AN =1-c¢€
and in the case of constant heat transfer
4 1 - ¢
G(s) = OTQ(S) - =
© (14)




It can be seen from equations (12) and (lh) that the gradient of the temperature
field is independent of the emissivity, whereas the gradient of the heat-transfer
field is altered by the presence of the Ffactor (1 - €)/e€® in equation (13).

Equations (10) and (11), or equivalently, equation (12) with (13) or (1k),
are solved numerically for the configuration shown in figure 2. It consists of
planes of length 1 whose extensions intersect at right angles which are joined
by a concave surface of length 25, a section of which is a circular arc. The
parameter, rg, 1s defined as

rs =TT (15)

and will be varied in the analysis along with the emissivity. In order to compare
different configurations, the total length of the surface, Ly, where

Lp=2S + 2L (16)

is held constant. Since dimensions involving length have been made dimensionless
by dividing by the surface half-length, Iﬂﬁé, the limits of integration in the
surface coordinate system become +1 and -1.

Before examination of the composite kernel function in the next section, it
is noted that equations (10) and (11) have a simple analytic form in the special
case that

re =1
that is, when the plane surface length, L, is zero. The configuration then is an

infinite shell with a circular-arc section for which the solutions to the two
problems stated above are given in reference 2. They are

-1
Q(Si = €l cos W€ g +J€ tan g cos Je §> cos <¥E g %) (17)

Ty

for the constant shell temperature and

oT(s) (1, x5, x 1[(mY @2
% ==+ 5 tan 5 3 [<é%> -8 } (18)

for the uniform heat transfer. The symbol R, the radius of the circular arc, is
related to the fillet parameter, r., by the expression

21'SLT
7

s2

R =

(19)

7




From this identity the angular coordinate, 6, employed in reference 2 and

equations (17) and (18) here, is related to the surface coordinate and fillet
parameter by

=g
=
w

Srg.

for |sj
Exact solutions to equations (10) and (11) are obtained from equations (12),
(13), and (14) with the aid of a Fortran program for the IBM T7090.

KERNEL FUNCTION

The kernel function that appears in the integral equation governing the
radlation flux function is defined as the absolute value of the gradient of the
angle factor. For any two-dimensional, continuous configuration with piecewise
continuous curvature, the angle factor is

|sin o(x, v; x', vy = |(x - x') cos B + (y - y') sin B (21)

Jx = %2 4 (v - y)2

where [ = arec tan dy/dx. A transformation from Cartesian coordinates to surface
coordinates (see fig. 2) is convenient when dealing with a composite surface.

For three choices of location of field and source points, equation (21) assumes a
compact form. For example, when both points lie on the circular arc, the angle
factor is

L cos I s - !

Ts

and is employed in reference 2. When both points lie together on either straight-
line segment, the angle factor is unity; whereas if the field point is on one
straight part and the source point is on the other which is the case considered
in reference 1, the angle factor (eq. (21)) can be written as




The different forms of the kernel function corresponding to the three angle
factors enumerated above as well as the angle factors which result from the other
possible locations of field and source points are computed using equation (1) and
are listed in figure 3. A perspective drawing, figure 4, depicts the approximate
behavior of K(s, s') for rg = 0.3 and exposes a property of the composite kernel
function that is an aid to checking the final numerical results. It is evident
that the gradient of K(s, s') is discountinuous at several places. At the
Juncture of the concave and plane surface, the radius of curvature Jjumps discon-
tinuously from a finite value to infinity. Hence, the derivative of the kernel
is discontinuous at the juncture also, namely, at s' = rg and s = r- (It is
also discontinuous at s = s'.)

The discontinuity in the kernel gradient causes a break in the slope of the
curves that represent Q(s)/oTy* and oT *(s)/Q, at s = r,. At the juncture point
the derivative of either function takes on two values which are determined accord-
ingly as s = rg 1s approached from the left or from the right. The slope differ-
ence formula for each function can be found, first, by writing down the total
radiation flux, B(s), as seen from points on either side and very close to the
Juncture, then by differentiating with respect to the field coordinate, s, and
finally, by passing to the limit, r . Thus, let s; and sz be points to the left
and to the right of rg and very close to it. The difference in slope of the
functions, Q(s)/TO4 and T4(s)/Qo, can be obtained most simply from the dimension-
less, cancnical form of the basic integral eguation, (12), with equations (13) and
(14), in the place of the dimensional flux function B(s) mentioned above.

Expressions for G(s) to the left and right of r, are

s

~Is 1
G(s1) =1 + A \/ﬁ G(s')KIV*(sl, st)ds!? +k/p G(s')Xg(s1 ,s")as?

-1 "I'S
I'S 1
+f G(s")K7(s1, s*)ds' + f G(s')KIV(sl, s')ds’ (22)
51 I‘S
and

s Ts
G(sz) =1 + A \jp G(s")Krrr*(s2, st)ds’ +L/ﬁ G(s’)KiI(sg, st)ds?

-1 Ty

+fl G(s")Krry(s2, s')ds' (23)

s

The slope difference formula for G(rg) is

5 9G(s) lim 3G(s1) = lim 3G(sp) (2k)
ds |s=rg S17Ts Osy 8275 dsso




and when equation (24) is combined with (22) and (23), the final form is written
compactly as

“Ts oK
- XU als') BIV* - aKI;[I*> s
S=Tq -1 8 Os

r oK oK L oK
+f " a(en)(== - II> as' +f 6(s") —P—[ds'}
rs os 0s T RE

Expressions for K(s, s') are given in figure 3.

As can be seen from figure 4 the composite kernel function itself is
continuous, is never negative, and is bounded everywhere except in the limit as
r goes to zero and s = s' = 0. DNote that a factor of 1/=2 is put into the pres-
ent definition of the kernel which is not present in the functions displayed in
references 1 and 2. The singularity that occurs when the arc length or fillet
radius is zero and s = s' = 0 is illustrated in reference 1. The function,
Ky77*(s, s'), for rg = O, is not bounded throughout the entire region of integra-
tion but, rather, increases indefinitely as one apprcaches the origin along an
arbitrary line, s/s' = constant. However, the value of the function, G(s), at
the inner corner of the adjoint plates is finite and 1s determined with the aid
of a Iiouville-Neumann expansion in powers of the parameter, A. The sum of this
series is a simple formula which was found and exploited to great advantage in
reference 1. For the two examples elaborated here G(0) yields

Qo) _ ¢«
oT,* L+ € (26)
and
oT4(0) -1+ ¢€ (27)
Q €

These formulas are of considerable value in tying down the numerical solution in
a region where the computed data begin to scatter, that is, near s = s' = 0 for
r, = o.

Another special situation, not involving a singularity of the kernel, arises
when 1rg = 1. Here K(s, s') reduces to KI(S, s'), the inversion of equation (12)
is possible, as shown in reference 2, and formulas (17) and (18) result.
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PRESENTATTON OF RESULTS

Two problems of physical interest have been formulated so that they emerge
directly from equation (4) when a transformation, equation (8), is made. The
transformation casts (4) into a form containing the two functions, Q(s) and oT%(s)
explicitly. When either function 1s regarded as a given constant of the problem,
the basic equation for the other function reduces to equation (10) or (11). It is
only for convenience in presentation, however, that one function is regarded as a
constant. The machine program developed to handle eguation (9) and applied to (10)
and (11) is equally valid when an arbitrary boundary condition is given. To facil-
itate the presentation of the numerical results that illustrate the effect of a
fillet, however, it suffices to use a constant, either Ty or Qg, a5 the prescribed
function on the boundary. Solutions to the integral eguations, (10) and (11),
discussed here may be found in figures 5 and 6, respectively. The emissivity and
fillet size appear as parameters.

Figure 5, a graph of @Q(s)/oT % versus s, consists of three groups of
curves: an upper group, middle group, and lower group, illustrating the level of
variation for three representative values of the emissivity, namely, € = 0.9, 0.5,
and 0.1, Each curve within a group depicts the actual behavior of the function.
Several values of fillet size are plotted, including the two limiting cases,
rg = 0 and rg = 1.0.

It is evident from figure 5 that, for a given surface temperature, T,, the
heat-transfer distribution, Q(s)/oT,%, is affected in two ways. First, for any
value of emissivity the distribution for the unfilleted structure tends toward
uniformity when a fillet is added. The spread between maximum and minirmm heat-
transfer values of any curve diminishes with increasing fillet size. The great-
est spread occurs for the unfilleted structure whereas the circular arc (rs = 1)
sustains the least variation of heat transfer along its surface. ©Second, for a
given fillet size the level of the variation of the heat transfer diminishes with
decreasing emissivity. As one might expect, therefore, a fillet has the greatest
effect for surfaces with high emissivities. The influence on surfaces with low
emissivities is small.

Figure 6 presents the temperature distribution on a filleted structure with
constant heat transfer. The scale constant, ®01 that appears on the figure is
the value of the function 0T4(O)/Q at s = 0 for rg = 1 and for a given €
(eq. (18)); it is presented as flgure 6(a) As € decreases ®, increases and
the curve is arbitrarily terminated at € = 0.01 as a practical limit. The tem-
perature function oT%(s)/Qy - ®, is given in figure 6(b) along with three
dashed curves. The latter curves are typical results based upon the use of an
approximation which introduces a shape factor. A discussion of the approximation
is given in the next section.

It can be seen from the results in figure 6(b) that for a glven heat
transfer, Q , to the surface, the temperature distribution, oT* s)/QO, is affected
only by the fillet size and not by the surface emissivity, a consequence of the
transformation that was found, namely, equation (14). The maximum temperature
occurs at the corner of the unfilleted structure but this temperature 1s reduced
and occurs at the Jjuncture of the two surfaces when a fillet is introduced. For
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a fixed value of emissivity the spread between maximum and minimum temperatures
diminishes with increasing fillet size. The greatest spread occurs for the
unfilleted structure whereas the circular arc, as before, sustains the least var-
iation in temperature along its surface. In this case, however, the gradient
along the surface 1s independent of emissivity. It should be noted though, that
the temperature variation along the surface becomes less and less significant as
the emissivity is reduced since the spread in temperatures becomes a smaller and
smaller fraction of the maximum temperature of the surface. Thus, as with the
previous example, the influence of the fillet is reduced with decreasing
emissivity.

For the range of parameters explored in this presentation only small values
of € cause convergence difficulty. A method of accelerating convergence was
developed in reference 1 and is contained in the machine program used here. Two
other parameters that have not been mentioned so far but appear in the machine
program are the step silze and the desired accuracy of the computed result. A
total of 51 equispaced field points on the surface at which a value of a function
is calculated are used. This is a step size of 0.02 since the total surface
length, L7, is set equal to 1 in the machine code but equals 2 in the formulation
of the problem and the presentation of computed results. A finer step size, 0.01,
did not alter any numerical results, to four significant figures, except when
very near the origin for small fillet sizes. Some variation in the third signif-
icant figure then is observed but little difficulty is experienced in fairing
curves because the value at the origin is known. The iteration procedure, for
all computed results, was continued until the difference in successive iterates
was less than 0.0001.

The value of either function, Q(s)/oT,* or OTP4(S)/QO, at the juncture of the
fillet and plane surfaces is obtained by extrapolation of the curves on either
side of the Juncture point. This is necessary inasmuch as the Juncture point is
not one of the equispaced field points. ZExcept for fillet sizes less than triple
the step size, that is, 0.06, this is satisfactory because there are then three
points through which the curve can be constructed. However, it is not necessary
to use a finer step to obtain the curve corresponding to fillets less than 0.06
because the value of the function is known at the point of symmetry, s = 0, and
the value at the junction can be obtained by extrapolating only the solution from
the right. The ordinates of the intersection of this extrapolated curve and the
ordinate, s = rg, 1s the desired value. These two values provided an upper and
lower bound on the cosine function which corresponds to the fillet portion of the
surface. The slope of this function is zero at s = 0O and there is enough infor-
mation, in most instances, to estimate adequately the curve between s = O and
s = rg. In the two figures, 5 and 6(b), curves for rg = 0.0l and 0.05 are drawn
in this way.

The code that was developed by H. Lomax for egquation (9) with kernel
function, equation (21), differs from that discussed in reference 1 in the manner
in which the configuration and composite kernel are introduced. Also it was
unnecessary to incorporate into the program the analytic formula to replace the
corner singularity. However, the iterative scheme and convergence tests are the
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same and the reader may consult this reference concerning these two aspects of
the numerical method as well as a discussion of the technigque by which the rate
of convergence can be zccelerated,

It is interesting to consider an alternate presentation of the solutions to
eguations (10) and (11) which define two distinct Physical problems. Instead,
one might begin with a mathematical problem defined by equation (12), the
Fredholm integral equation of the second kind with symmetric kernel. The kernel
is characterized by the parameter, ry, as before. The solutions to this equation
can be represented by a two-parameter family of curves, G(s), the parameters
being A and rg instead of € and rg. An example of this family is given by
figure 6(b) when € = 1.0. This group of curves represents, in the mathematical
sense, the variation of G(s) with s for A = 1.0 and several values of the kernel
parameter, rg. The envelope of the solutions shown in this figure is defined by
the curves corresponding to rg = 0 and rg = 1.0. As the parameter A is
reduced from 1 to O, the size of the envelope as well as the level of the entire
group of curves is also reduced. In the limit that AN = 0, the envelope coa-
lesces to the single curve, G(s) = 1.0. The transformations, equations (13) and
(14), lead from the mathematical problem as stated above back to the two Physical
problems which have been discussed previously and whose solutions are given in
figures 5 and 6.

APPROXIMATION USING SHAPE FACTOR

An approximate solution, Gl(s), of the canonical form of the radiation
integral equa:ion, equation (12), is obtained under the assumption that the vari-
ation of G(s') with s' can be ignored with respect to the variation of K(s, s')
with s'. It is possible, therefore, to replace G(s') by G(s) and the resultant
expression is

1
Gl(s) - 1 - 7\f(s)

where f(s), called the shape factor, is

(28)

£(s) :fL K(s, s')as’ (29)

or alternately

f(s) =1 - -2- [sin (s, =1) - sin 9(s, +1)J , 8§20 (30)
and

Isin (s, s’)l = (31)

o

See, for example, figure 1. Equation (30) is especially convenient to graphical
determination of the shape factor.

13




For comparison with the exact numerical solution of eguations (10) and (11),
the corresponding approximate solutions are

r-f
G?Jl(s4 = [E (S)] (32)
oTo 1 - (1 - e)f(s)
and
oT,%(s) 1 £(s)
Y T T . (33)
Q, e 1-f(s)
As a measure of accuracy of the approximation, the quantities
Q(s) - Qi(s)
o (34)
and
oT%s) - oT,%(s)
(35)

were computed for a representative number of points and for the same values of
the two parameters illustrated in figures 5 and 6(b). For these values of the
two parameters, the ebsolute value of (34) is found to be less than 0.09 and the
ebsolute value of (35) is found to be less than 0.05 everywhere.

In both physical problems considered, the greatest disagreement between
exact and approximate solutions occurs for a fillet size of about 0.1L. The
dependence of expressions (34) and (35) on emissivity, in contrast to their
dependence on fillet size, differs for the two cases. TFor the constant tempera-
ture case, expression (34) increases with decreasing emissivity, being 0.006 for
€ = 0.9, whereas it is 0.09 for € = 0.1. For the constant heat-transfer case,
expression (35) decreases with decreasing emissivity. An emissivity, € = 0.9,
yields the value 0.05 for expression (35) but when ¢ = 0.1, the same expression
yields a value of 0.009. These results suggest also that in the mathematical
sense the approximation, G.(s), most accurately represents the exact value G(s),
given by equation (12), for low values of A where O <A< 1. Approximate
results, shown as dashed lines on figure 6(b), are presented only for the con-
stant heat-transfer case because this case represents a significant departure of
the approximate solution from the exact solution and at the same time the largest
variation in the function GT4(8>/QO. The constant temperature example for high
values of € din which the variation of Q(s)/To4 is significant is well
represented by the formula, eguation (34).

At the corner, s = 0, for all values of emissivity and for rg = 0, the
approximation Gl(s) is seen to yleld exact results; that is, equations (30) and.
(32), and (30) and (33) lead to equations (26) and (27), respectively, since
£(0) = 1/2 for r_ = 0. This explains, in part, why a maximum is observed in
expressions (34) and (35) when they are regarded as continuous functions of r

1k
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Without the corner formulas, (26) and (27), the available numerical data used in
equation (29) and, hence, the approximate solutions, (32) and (33), do not suggest
such a maximum.

The approximation appears to break down whereas it is actually
exact at the corner.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, Calif., Sept. 24, 1962.
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